National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Material nonlinear solution of structures made of plastics
Weis, Lukáš ; Krejsa,, Martin (referee) ; Králík,, Juraj (referee) ; Kytýr, Jiří (referee) ; Němec, Ivan (advisor)
The presented thesis focuses on static analysis of plastic structures, taking into account nonlinear behaviour of the material depending on the stress. The static analysis is performed using the finite element method. The difference between material linear and material nonlinear approach is illustratively described in the introduction. A shell finite element, which is enhanced by the possibility of further delamination into layers and integration points along its thickness, is suitable to be used for a numerical analysis of a plastic structures. Separate chapters are devoted to the integration of the resulting values over the height of the cross-section. The integration of the material stiffness matrix correctly reflects the emergence of eccentricity. A part of the attention is devoted to the numerical quadrature rules. Next chapter is devoted to material nonlinear models. Two approaches are described: a simpler one, using the isotropic nonlinear elastic model, and more general one, using the orthotropic plastic model. The theoretical description is complemented by the graphic interpretation of the criteria according to the individual authors. A significant portion of this work is devoted to the algorithmization of calculation procedures described in the theoretical chapters. The algorithmization itself is implemented in Fortran language into a dynamic-link library which is part of the software program RFEM 5 which is widely used in engineering practice. A part of the work is a study comparing the performance of the different technologies applicable for the algorithmization of the described issues. The agreement of the theoretical analysis of the material models and subsequent implementation within the RFEM 5 is demonstrated on the example of the bent cantilever. The thermoplastic aboveground tank structure is subject of detailed material linear, and nonlinear analysis respectively. The various approaches are compared on the results of stress, deformation an
Material nonlinear solution of structures made of plastics
Weis, Lukáš ; Krejsa,, Martin (referee) ; Králík,, Juraj (referee) ; Kytýr, Jiří (referee) ; Němec, Ivan (advisor)
The presented thesis focuses on static analysis of plastic structures, taking into account nonlinear behaviour of the material depending on the stress. The static analysis is performed using the finite element method. The difference between material linear and material nonlinear approach is illustratively described in the introduction. A shell finite element, which is enhanced by the possibility of further delamination into layers and integration points along its thickness, is suitable to be used for a numerical analysis of a plastic structures. Separate chapters are devoted to the integration of the resulting values over the height of the cross-section. The integration of the material stiffness matrix correctly reflects the emergence of eccentricity. A part of the attention is devoted to the numerical quadrature rules. Next chapter is devoted to material nonlinear models. Two approaches are described: a simpler one, using the isotropic nonlinear elastic model, and more general one, using the orthotropic plastic model. The theoretical description is complemented by the graphic interpretation of the criteria according to the individual authors. A significant portion of this work is devoted to the algorithmization of calculation procedures described in the theoretical chapters. The algorithmization itself is implemented in Fortran language into a dynamic-link library which is part of the software program RFEM 5 which is widely used in engineering practice. A part of the work is a study comparing the performance of the different technologies applicable for the algorithmization of the described issues. The agreement of the theoretical analysis of the material models and subsequent implementation within the RFEM 5 is demonstrated on the example of the bent cantilever. The thermoplastic aboveground tank structure is subject of detailed material linear, and nonlinear analysis respectively. The various approaches are compared on the results of stress, deformation an

Interested in being notified about new results for this query?
Subscribe to the RSS feed.